MRG Glasgow
  • Home
  • Team
  • Projects
  • News
  • Facilities
  • Codes
  • Publications
  • Seminars
  • Contact

Presentation: HexMat Workshop 2016 in Oxford, UK

29/3/2016

 
Picture
Euan and Kayleigh attended the International Workshop on 'Mechanistic Behaviour of HCP Alloys 2016', which was held at Pembroke College, Oxford, UK.

This workshop drew together industrial and academic experts from a variety of disciplines, including materials science and engineering, mechanical engineering, non destructive testing, and high rate deformation. Discussions focused on microstructure-performance property relationships and their impact on engineering components in industries such as aerospace, nuclear power, and transport. Read more about it here.

Euan presented his recent work on determining Ti-6Al-4V single crystal material parameters using a discrete spherical harmonic analysis of lattice strain pole figures from in situ mechanical testing at the Cornell High Energy Synchrotron Source and crystal plasticity finite element simulations. Euan also chaired a session on the high strain rate behaviour of HCP materials.

Accepted publication: An unconditionally stable algorithm for generalized thermoelasticity based on operator-splitting and time-discontinuous Galerkin finite element methods

26/3/2016

 
Temperature distribution thermoelasticity
An article co-authored by Dr Andrew McBride, Mebratu Fenta & Daya Reddy has been published in Computer Methods in Applied Mechanics and Engineering.

An efficient time-stepping algorithm is proposed based on operator-splitting and the space-time discontinuous Galerkin finite element method for problems in the non-classical theory of thermoelasticity. The non-classical theory incorporates three models: the classical theory based on Fourier’s law of heat conduction resulting in a hyperbolic-parabolic coupled system, a non-classical theory of a fully-hyperbolic extension, and a combination of the two. The general problem is split into two contractive sub-problems, namely the mechanical phase and the thermal phase. Each sub-problem is discretized using the space-time dis- continuous Galerkin finite element method. The sub-problems are stable which then leads to unconditional stability of the global product algorithm. A number of numerical examples are presented to demonstrate the performance and capability of the method. 

You can access the full text via Science Direct by following the link below.
Read more

Accepted paper: Computational electro- and magneto-elasticity for quasi-incompressible media immersed in free space

15/3/2016

 
Magnetic Field Strength
An article co-authored by Dr Andrew McBride and Jean-Paul Pelteret, Denis Davydov, Andrew McBride, Duc Khoi Vu & Paul Steinmann has been published in the International Journal for Numerical Methods in Engineering.

In this work a mixed variational formulation to simulate quasi-incompressible electro- or magneto-active polymers immersed in the surrounding free space is presented. A novel domain decomposition is used to disconnect the primary coupled problem and the arbitrary free space mesh update problem. Exploiting this decomposition we describe a block iterative approach to solving the linearised multiphysics problem, and a physically and geometrically based, three-parameter method to update the free space mesh. Several application-driven example problems are implemented to demonstrate the robustness of the mixed formulation for both electro-elastic and magneto-elastic problems involving both finite deformations and quasi-incompressible media.

You can access the full text via the Wiley Online Library by following the link below.
Read More

    Archives

    July 2022
    May 2020
    December 2019
    September 2019
    June 2019
    May 2019
    March 2019
    December 2018
    September 2018
    June 2018
    March 2018
    December 2017
    November 2017
    April 2016
    March 2016

    Categories

    All
    Events
    Experiments
    Publications

    RSS Feed

Research

Projects
Facilities
Publications
​
Seminars

About us

The Team
The University
Join us

Support

Contact
Lab Access
Terms of Use
Lab Portal
© MRG 2017-2021
  • Home
  • Team
  • Projects
  • News
  • Facilities
  • Codes
  • Publications
  • Seminars
  • Contact